Three Technology Advancements in Vapor Intrusion Mitigation

FL AL Brownfields Conferece | April 26, 2022 Jordan Knight National Sales Manager

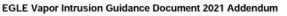
a division of REGENESIS®

The Vapor Intrusion industry is becoming more sophisticated.

- VI Guidance: Federal, State, County level
- many documents in development and revision;

- Professional Organization guidance: ITRC, ANSI/AARST, AVIP
- goal of standardizing the industry

End-user guidance and minimum performance specifications



The Vapor Intrusion industry is becoming more sophisticated.

Inherent need for technology advancement, calibration and improvement

Property owners demand tailored, proven solutions to mitigate their exposure to environmental risks

green spaces are dwindling

There are powerful incentives and resources available at the federal, state, and local level for contaminated site redevelopment

GeorgiaBrownfield

Florida Brownfields Association

Spray-Applied Vapor Intrusion Barriers

- Meet or exceed VI Guidance
- Offer high chemical resistance
- Easily applied in the field
- Robust & durable for construction
- Several layers of QA/QC

THE AUDIENCE

RAISE YOUR HAND IF YOU HAVE RECENTLY...

ENJOYED A BAG OF CHIPS?

ATTENDED A CHILD'S BIRTHDAY PARTY?

VISITED A DOCTOR'S OFFICE?

If you answered YES...

METALLIZED FILMS

METALLIZED FILMS

• Mylar Balloons

- Introduced in the 1970s
- Designed to improve balloon longevity
- Limited He gas diffusion across film
 - Porous latex facilitates seepage
- Food Packaging
 - Incorporated for use in 1970s
 - Flexible
 - Barrier to moisture and O₂
 - Prolongs freshness

Hanlon, J. (1998) 3rd ed. Handbook of Package Engineering, Boca Raton, FL, CRC Press LLC: ISBN 1-56679-306-1. Chapter 3 Films and Foils.

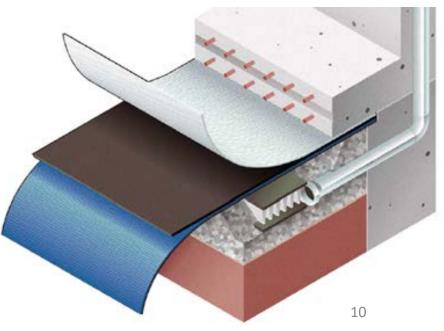
NITRILE

Sansone, E.B.; Tewari, Y.B. "Differences in the extent of solvent penetration through natural rubber and nitrile gloves from various manufacturers. Am. Ind. Hyg. Assoc. J. 1980, 41(7), 527-8.

- Adopted in 1980's and commercialized in the 1990's by medical and PPE community for:
 - No allergic reaction compared to latex
 - Synthetic
 - Low permeance of contaminants, oils, acids
 - Minimized dermal exposure
 - Enhanced puncture resistance

COMPOSITE VI BARRIER EVOLUTION


Spray-applied barriers placed on <u>geotextiles</u> introduced in 1980s-2000s

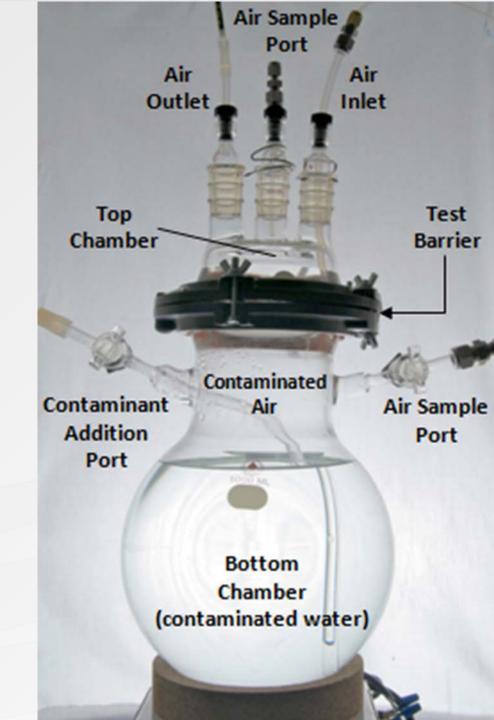

- Methane mitigation
- VOC mitigation
 - PCE: 1.32 x 10⁻¹³ m²/sec

Land Science commercialized composite barriers with dual chemical resistant PE layers in 2007 for VOC mitigation

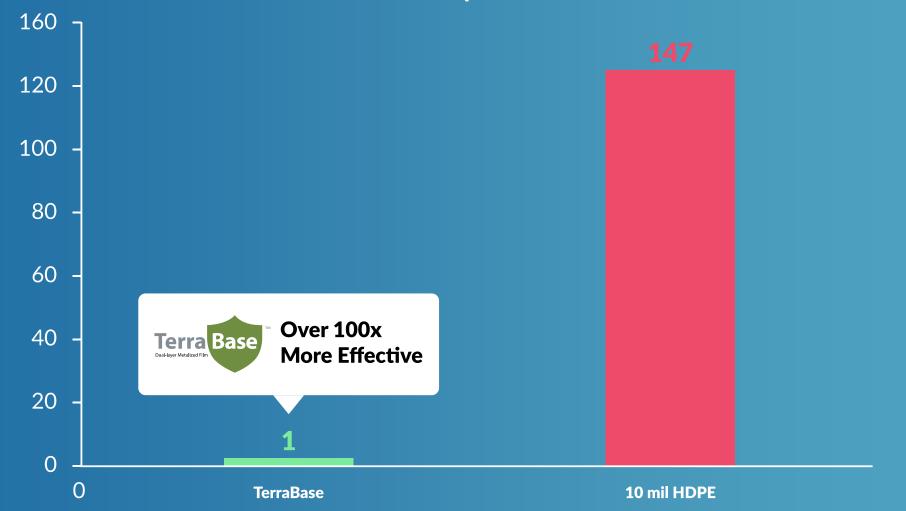
- Base Layer: HDPE/geotextile
- 60-mil asphaltic spray-applied core
- Top Layer: HDPE/geotextile
- 685X lower diffusion coefficient

R&D Hypothesis: Chemical resistance performance will be further enhanced by the addition of METALLIZED FILM & NITRILE

Vapor Intrusion Barrier Material Advancements

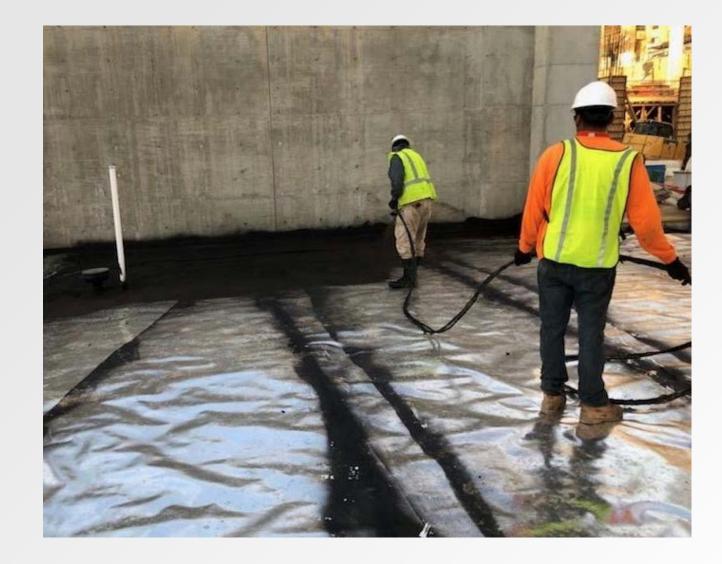

Reinforced Metallized Film Barriers Nitrile-Advanced Asphalt Latex

Chemical Resistance Testing: Comparing Base Layers


- Two-Chamber active diffusion testing
 - Relative performance
- Represent sub-slab cVOC challenge contaminant vapors
- TerraBase reinforced metalized polyethylene sheet vs HDPE sheet (10 mil)
 - 100 mg/L TCE

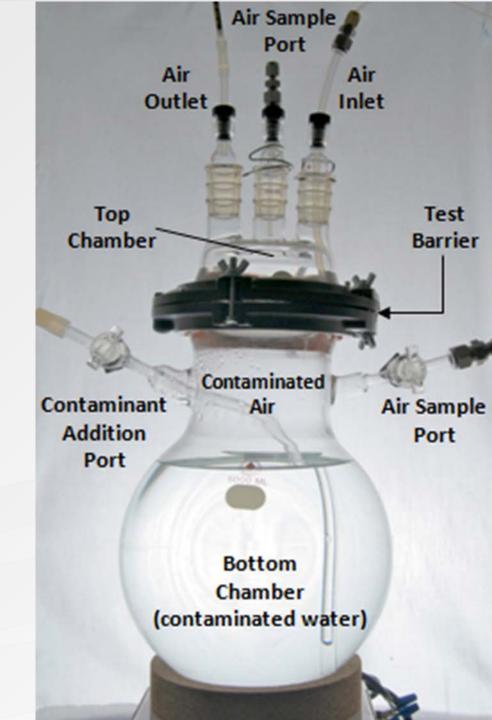
and Science

- 7000 ppmV in vapor phase
- Only place for vapors to go is through the membrane material


Base Layer TCE Diffusion Flux Comparison

Implications of Results

- Base Layers of Spray-Applied membranes are the first line of defense in eliminating the VI pathway through the building
 - Only line of defense if using a single layer system
- Introducing a highly resistive material into the VIMS design specifications improves the longevity and performance of that system



Chemical Resistance Testing: Comparing Spray-Applied Layers


- Two-Chamber active diffusion testing
 - Relative performance
- Represent sub-slab cVOC challenge contaminant vapors
- Nitrile-Advanced Asphalt Latex 20-mil sample vs. historic Asphalt Latex (SBR) 20mil sample
 - 10 mg/L TCE

and Science

- 700 ppmV in vapor phase
- Only place for vapors to go is through the membrane material

Nitrile-Advanced Asphalt Latex vs. Generic Asphalt Latex Performance Comparison

Time

Implications of Results

- The most critical pathways and entry points of a membrane system:
 - Utility conduits
 - Plumbing penetrations
 - Seams
 - Foundation Perimeters
- Applying a material with exceptional resistivity to contaminant diffusion strengthens the susceptible parts of your system
 - Reliant on the spray-applied material

Three VIM Technology Advancements

Spray-Applied Vapor Intrusion Barriers

- Meet or exceed VI Guidance
- Offer high chemical resistance
- Easily Applied in the field
- Robust & durable for construction
- Several layers of QA/QC

Nitrile-Advanced Asphalt Latex & Reinforced Metallized Film vapor intrusion barriers represent major advancements to the VI industry to ensure future occupants are protected for the life of the building.

Latest Technologies Solve VI **Challenges for Redevelopment** of a Former Gas Station

Patrick W. Lowery, PG

Begin with the end in mind

Common Redevelopment Scenario

- Repeatable Pre-emptive Vapor Intrusion Mitigation Strategy
- Identify Best Practices for VIM
 - Design, Implementation & Performance Verification

Recipe for Success

- Assurance the project can move forward
- Meeting Budgetary & Performance objectives
- Peace of mind that future occupants are safe for lifetime of the building

Proposed Town Hall and

Library

Site History and Due Diligence

- Phase I
 - Identified former gas station
 - Operated 3 USTs from 1973-1991
 - Closed without any reporting

Due Diligence

Limited Phase II ESA

SOIL

- Benzene above NC Maximum Soil Contaminant Concentration (MSCCs) for Soil to Groundwater. Indicates Benzene exists at a concentration that could leach to the groundwater table at the property
- VPH a NC required analytical method. It is an analysis for specific aromatic carbon chains. Exceeded MSCCs Soil to Groundwater same as above.

GROUNDWATER

• Widespread petroleum compounds at concentrations above the North Carolina Groundwater Standards (NC2L).

NCDEQ UST Department closed the release using Risk-Based Closure and implemented a Groundwater Use Restriction attached to the Deed.

Table 1: Soil Sample Detection Summary Table

		Samp	ole ID	SS	-1	55-	2	SS-3		SS-4		55	5-5	SS-6	;	
				2020	6/8/2	020	6/8/2	020	6/8/20	20	6/8/	2020	6/8/2020			
		Sample Depth ('bgs)		9-1	10'	10-11'		9-10'		9-10'		9-10'		9-10'		
		Field Screening Result (ppm) DEQ Reference Values		0.	.0	126.8		0.0		555.0		34	2.0	0.0		
	All Values in mg/kg															
		Commercial Soil-to-Water														
CAS	VOC Analyte	MSCC	MSCC	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	
7-64-1	Acetone	3.60E+05	2.40E+01	ND	0.02	0.022	0.02	0.012 J	0.02	0.012 J	0.02	0.029	0.02	ND	0.02	
1-43-2	Benzene	1.64E+02	5.60E-03	ND	0.005	ND	0.005	ND	0.005	ND	0.005	0.012	0.005	ND	0.005	
8-93-3	2-Butanone (MEK)	2.45E+05	1.60E+01	ND	0.02	0.004 J	0.02	ND	0.02	ND	0.02	0.007	J 0.02	ND	0.02	
5-15-0	Carbon disulfide	4.09E+04	4.30E+00	ND	0.005	0.004 J	0.005	ND	0.005	ND	0.005	0.002	J 0.005	ND	0.005	
00-41-4	Ethylbenzene	4.00E+04	4.90E+00	ND	0.005	0.077	0.005	ND	0.005	0.008	0.005	1.1	0.36	ND	0.005	
8-82-8	Isopropylbenzene	4.09E+04	1.70E+00	ND	0.005	0.026	0.005	ND	0.005	0.002 J	0.005	0.17	0.005	ND	0.005	
08-87-2	Methylcyclohexane	NA	NA	ND	0.005	0.11	0.005	ND	0.005	0.006	0.005	0.2	0.005	ND	0.005	
08-88-3	Toluene	3.20E+04	4.30E+00	ND	0.005	ND	0.005	ND	0.005	ND	0.005	0.025	0.005	ND	0.005	
330-20-7	Xylenes (total)	8.18E+04	4.60E+00	ND	0.01	0.12	0.01	ND	0.01	0.026	0.01	2.2	0.7	ND	0.01	
		Commercial	Soil-to-Water													
:AS	SVOC Analyte	MSCC	MSCC	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	
3-32-9	Acenaphthene	2.40E+04	8.20E+00	ND	0.002	ND	0.002	ND	0.003	ND	0.002	0.002	J 0.003	ND	0.003	
08-96-8	Acenaphthylene	1.23E+04	1.10E+01	ND	0.002	ND	0.002	ND	0.003	ND	0.002	ND	0.003	ND	0.003	
20-12-7	Anthracene	1.22E+05	9.40E+02	ND	0.002	0.002 J	0.002	ND	0.003	0.002 J	0.002	0.002	J 0.003	ND	0.003	
00-52-7	Benzaldehyde	NA	NA	ND	0.014	ND	0.014	ND	0.016	ND	0.014	ND	0.015	ND	0.016	
6-55-3	Benzo(a)anthracene	8.00E+00	3.50E-01	ND	0.002	ND	0.002	0.005	0.003	ND	0.002	ND	0.003	ND	0.003	
0-32-8	Benzo(a)pyrene	7.80E-01	9.60E-02	ND	0.002	ND	0.002	0.006	0.003	ND	0.002	ND	0.003	ND	0.003	
05-99-2	Benzo(b)fluoranthene	8.00E+00	1.20E+00	ND	0.002	ND	0.002	0.009	0.003	ND	0.002	ND	0.003	ND	0.003	
91-24-2	Benzo(g,h,i)perylene	1.23E+04	6.40E+03	ND	0.002	ND	0.002	0.005	0.003	ND	0.002	ND	0.003	ND	0.003	
07-08-9	Benzo(k)fluoranthene	7.80E+01	1.20E+01	ND	0.002	ND	0.002	0.003 J	0.003	ND	0.002	ND	0.003	ND	0.003	
2-52-4	1,1'-Biphenyl	NA	NA	ND	0.014	ND	0.014	ND	0.016	ND	0.014	0.006	J 0.015	ND	0.016	
18-01-9	Chrysene	7.80E+02	3.90E+01	ND	0.002	ND	0.002	0.006	0.003	ND	0.002	ND	0.003	ND	0.003	
4-74-2	Di-n-butyl phthalate	NA	NA	0.006 J	0.014	0.006 J	0.014	ND	0.016	ND	0.014	ND	0.015	ND	0.016	
06-44-0	Fluoranthene	1.64E+04	2.90E+02	ND	0.002	ND	0.002	0.008	0.003	ND	0.002	0.001	J 0.003	0.001 J	0.003	
6-73-7	Fluorene	1.64E+04	4.70E+01	ND	0.002	0.001 J	0.002	ND	0.003	0.002 J	0.002	0.003	0.003	ND	0.003	
93-39-5	Indeno(1,2,3-c,d)pyrene	8.00E+00	3.40E+00	ND	0.002	ND	0.002	0.003	0.003	ND	0.002	ND	0.003	ND	0.003	
1-57-6	2-Methylnaphthalene	1.64E+03	3.60E+00	ND	0.002	0.023	0.002	0.002 J	0.003	0.037	0.002	0.35	0.003	0.003	0.003	
1-20-3	Naphthalene	8.18E+03	3.60E+00	ND	0.002	0.006	0.002	0.002 J	0.003	0.004	0.002	0.15	0.003	0.002 J	0.003	
5-01-8	Phenanthrene	1.23E+04	5.60E+01	ND	0.002	0.004	0.002	0.003 J	0.003	0.004	0.002	0.006	0.003	ND	0.003	
29-00-0	Pyrene	1.23E+04	2.70E+02	ND	0.002	0.002 J	0.002	0.008	0.003	0.002 J	0.002	0.002	J 0.003	0.002 J	0.003	
		Commercial	Soil-to-Water													
:AS	MA VPH	MSCC	MSCC	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	
ESI-0029	C5 - C8 Aliphatics	2.45E+04	6.80E+01	ND	4.4	9.2	4.1	ND	5	ND	4.5	24	5.5	ND	4.4	
ESI-0030	C9 - C12 Aliphatics	4.00E+04	5.40E+02	ND	4.4	5	4.1	ND	5	2.3 J	4.5	35	5.5	ND	4.4	
ESI-0031	C9 - C10 Aromatics	1.23E+04	3.10E+01	ND	1.5	5.9	1.4	ND	1.7	1.7	1.5	35	1.8	ND	1.5	
		ND = Not detecte	d at or above MI)L			J = Estim	nated Concen	tration (=	<rl>MDL)</rl>						
		BOLD = Concentr	ation Above Refe	rence Value	es		NT = No	t Tested								

MSCCs = Maximum Soil Contaminant Concentration Levels

Table 1: Soil Sample Detection Summary Table (continued)

		Sample ID		SS-1	1	55-	8	SS-9)	SS-10		SS-1	1	SS-12		
		Sample Date		6/8/2020		6/8/2020		6/8/2020		6/8/2020		6/8/2020		6/8/2020		
		Sample Depth ('bgs)		9-10'		3-4'		3-4'		3-4'		9-10'		9-10	j.	
		Field Screening Result (ppm)		343.0		85.0		8.9		5.5		151.0		115.0		
	All Values in mg/kg	DEQ Reference Values														
		Commercial Soil-to-Water		1												
CAS	VOC Analyte	MSCC	MSCC	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	
67-64-1	Acetone	3.60E+05	2.40E+01	0.016 J	0.022	ND	0.02	ND	0.02	ND	0.028	ND	0.016	0.017 J	0.025	
71-43-2	Benzene	1.64E+02	5.60E-03	0.0054 J	0.005	ND	0.005	ND	0.005	ND	0.007	ND	0.004	ND	0.006	
78-93-3	2-Butanone (MEK)	2.45E+05	1.60E+01	ND	0.02	ND	0.02	ND	0.02	ND	0.028	ND	0.016	ND	0.025	
75-15-0	Carbon disulfide	4.09E+04	4.30E+00	ND	0.005	ND	0.005	ND	0.005	ND	0.007	ND	0.004	0.044 J	0.006	
100-41-4	Ethylbenzene	4.00E+04	4.90E+00	0.49	0.32	0.24 E	0.005	ND	0.005	0.005 J	0.007	0.014	0.004	2.1	0.29	
98-82-8	Isopropylbenzene	4.09E+04	1.70E+00	0.35 E	0.005	0.048	0.005	ND	0.005	ND	0.007	0.003 J	0.004	0.18	0.006	
108-87-2	Methylcyclohexane	NA	NA	0.24 E	0.005	0.055	0.005	ND	0.005	ND	0.007	ND	0.004	0.15	0.006	
108-88-3	Toluene	3.20E+04	4.30E+00	0.056	0.005	0.007	0.005	ND	0.005	ND	0.007	ND	0.004	ND	0.006	
1330-20-7	Xvlenes (total)	8.18E+04	4.60E+00	1.6	0.64	0.7	0.61	ND	0.01	0.029	0.014	0.069	0.008	2.2	0.59	
		Commercial	Soil-to-Water													
CAS	SVOC Analyte	MSCC	MSCC	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	
83-32-9	Acenaphthene	2.40E+04	8.20E+00	ND	0.033	0.006	0.003	ND	0.003	ND	0.016	ND	0.003	ND	0.003	
208-96-8	Acenaphthylene	1.23E+04	1.10E+01	ND	0.033	ND	0.003	0.002 J	0.003	ND	0.016	ND	0.003	ND	0.003	
120-12-7	Anthracene	1.22E+05	9.40E+02	ND	0.033	0.006	0.003	0.003	0.003	ND	0.016	0.001 J	0.003	0.004	0.003	
100-52-7	Benzaldehyde	NA	NA	ND	0.16	ND	0.016	0.012 J	0.017	ND	0.079	ND	0.014	ND	0.015	
56-55-3	Benzo(a)anthracene	8.00E+00	3.50E-01	0.04	0.033	0.003	0.003	0.012	0.003	0.02	0.016	ND	0.003	ND	0.003	
50-32-8	Benzo(a)pyrene	7.80E-01	9.60E-02	0.034	0.033	ND	0.003	0.013	0.003	0.018	0.016	ND	0.003	ND	0.003	
205-99-2	Benzo(b)fluoranthene	8.00E+00	1.20E+00	0.056	0.033	ND	0.003	0.02	0.003	0.027	0.016	ND	0.003	ND	0.003	
191-24-2	Benzo(g,h,i)pervlene	1.23E+04	6.40E+03	0.021 J	0.033	ND	0.003	0.006	0.003	L 800.0	0.016	ND	0.003	ND	0.003	
207-08-9	Benzo(k)fluoranthene	7.80E+01	1.20E+01	ND	0.033	ND	0.003	0.006	0.003	L 600.0	0.016	ND	0.003	ND	0.003	
92-52-4	1,1'-Biphenyl	NA	NA	ND	0.16	0.024	0.016	ND	0.017	ND	0.079	ND	0.014	ND	0.015	
218-01-9	Chrysene	7.80E+02	3.90E+01	0.035	0.033	0.001 J	0.003	0.013	0.003	0.015 J	0.016	ND	0.003	ND	0.003	
132-64-9	Dibenzofuran	1.64E+03	4.70E+00	ND	0.016	ND	0.016	0.01 J	0.017	ND	0.079	ND	0.014	ND	0.015	
84-74-2	Di-n-butyl phthalate	NA	NA	ND	0.16	0.007 J	0.016	0.009 J	0.017	0.032 J	0.079	0.007 J	0.014	ND	0.015	
205-44-0	Fluoranthene	1.64E+04	2.90E+02	0.054	0.033	0.003	0.003	0.016	0.003	0.019	0.016	ND	0.003	0.001 J	0.003	
86-73-7	Fluorene	1.64E+04	4.70E+01	ND	0.033	0.01	0.003	ND	0.003	ND	0.016	ND	0.003	0.003	0.003	
193-39-5	Indeno(1,2,3-c,d)pyrene	8.00E+00	3.40E+00	0.018	0.033	ND	0.003	0.004	0.003	0.008 J	0.016	ND	0.003	ND	0.003	
91-57-6	2-Methylnaphthalene	1.64E+03	3.60E+00	0.68	0.033	1.4	0.003	0.049	0.003	0.032	0.016	0.058	0.003	0.037	0.003	
91-20-3	Naphthalene	8.18E+03	3.60E+00	0.68	0.033	1	0.003	0.042	0.003	0.026	0.016	0.037	0.003	0.039	0.003	
85-01-8	Phenanthrene	1.23E+04	5.60E+01	0.064	0.033	0.014	0.003	0.026	0.003	0.013 J	0.016	0.001 J	0.003	0.007	0.003	
129-00-0	Pyrene	1.23E+04	2.70E+02	0.05	0.033	0.006	0.003	0.017	0.003	0.021	0.016	0.002 J	0.003	0.004	0.003	
		Commercial	Soil-to-Water													
CAS	MA VPH	MSCC	MSCC	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	
SESI-0029	C5 - C8 Aliphatics	2.45E+04	6.80E+01	20	5	5.7	4.7	ND	5.2	ND	5.1	ND	4.3	9.7	4	
SESI-0030	C9 - C12 Aliphatics	4.00E+04	5.40E+02	50	5	6.6	4.7	1.9 J	5.2	ND	5.1	ND	4.3	27	4	
SESI-0031	C9 - C10 Aromatics	1.23E+04	3.10E+01	59	1.7	8.2	1.6	1.7	1.7	0.83 J	1.7	1 J	1.4	25	1.3	
	-	ND = Not detecte	d at or above MD	L			J = Estim	ated Concent	tration (=	<rl>MDL)</rl>						
BOLD = Concentration Above Reference Values NT = Not Tested																

BOLD = Concentration Above Reference Values MDL = Method Detection Limit

MSCCs = Maximum Soil Contaminant Concentration Levels

Land Science a division of REGENESIS*

MDL = Method Detection Limit

Table 2: Groundwater Sample Detection Summary Table

		Sample ID			TMW	1	TM	W-2	1	MW-3	TMW	/-4	TMW-5		TMW	-6
		Sample Date			6/8/20			2020	6/8/2020		6/8/2020		6/8/2020		6/8/2020	
		Temp Well Depth ('bgs)			13'				13'		13'		13'		13'	
		Depth to Water ('bgs)		10.1		12	2.7'		DRY	8.7		9.	.0'	8.65		
	All Values in ug/L	DEQ Reference Values														
CAS	VOC Analyte	NC 2L GWQS	GCL	Non-Res Vapor GWSL	Result	RL	Result	RL	Result	R	L Result	RL	Result	RL	Result	RL
67-64-1	Acetone	6.00E+03	6.00E+06	1.90E+07	23	10	ND	200		NT	ND	500	ND	200	5.7 J	10
71-43-2	Benzene	1.00E+00	5.00E+03	6.90E+01	ND	0.5	ND	10		NT	300	25	130	10	ND	0.5
78-93-3	2-Butanone (MEK)	4.00E+03	4.00E+06	1.90E+06	4.5 J	10	ND .	J 200		NT	ND	500	ND	200	ND	10
104-51-8	n-Butylbenzene	7.00E+01	6.90E+03	NE	1.5	0.5	ND	10		NT	ND	25	130	10	4	0.5
135-98-8	sec-Butylbenzene	7.00E+01	8.50E+03	NE	0.79	0.5	31	10		NT	27	25	37	10		0.5
74-87-3	Chloromethane	3.00E+00	3.00E+03	2.20E+02	0.47 J	0.5	ND	10		NT	ND	25	ND	10		0.5
108-20-3	Diisopropyl ether (IPE)	7.00E+01	7.00E+04	5.90E+03	ND	0.5	ND	10		NT	ND	25		10		0.5
100-41-4	Ethylbenzene	6.00E+02	8.45E+04	1.50E+02	12	0.5	2600	10		NT	5600	25	3000	10		0.5
98-82-8	Isopropylbenzene	7.00E+01	2.50E+04	7.50E+02	1.6	0.5	130	10		NT	190	25		10		0.5
99-87-6	p-Isopropyitoluene	2.50E+01	1.17E+04	NE D COE - OA	0.46 J	0.5	18	10		NT	ND	25	21	10		0.5
1634-04-4 75-09-2	Methyl tertiary butyl ether (MTBE)	2.00E+01 5.00E+00	2.00E+04 5.00E+03	2.00E+04 4.00E+03	ND ND	0.5	ND ND	10 10		NT NT	ND ND	25 25	ND 8	10 J 10		0.5
91-20-3	Methylene chloride Naphthalene	6.00E+00	6.00E+03	4.00E+05 1.50E+02	8.3	0.5	900	10		NT	1400	25		10		0.5
103-65-1	n-Propylbenzene	7.00E+01	3.00E+04	2.00E+02	5.4	0.5	420	10		NT	570	25		10		0.5
108-88-3	Toluene	6.00E+02	2.60E+05	1.60E+04	ND	0.5	64	10		NT	1100	25		10		0.5
108-67-8	1,3,5-Trimethylbenzene	4.00E+02	2.85E+04	1.50E+02	9.9	0.5	770	10		NT	1000	25		10		0.5
95-63-6	1,2,4-Trimethylbenzene	4.00E+02	2.50E+04	2.10E+02	36	0.5	3000	10		NT	4300	25	1700	10		0.5
	L m+p-Xylenes	NA	NA		13	0.5	3000	10		NT	6000	25	1700	10		0.5
95-47-6	o-Xylenes	NA	NA		6.7	0.5	2700	10		NT	7300	25	2500	10	6.4	0.5
1330-20-7	Xylenes (total)	5.00E+02	8.55E+04	3.20E+02	19.7	0.5	5700	10		NT	13300	25	4200	10	12.5	0.5
			'	Non-Res Vapor												
CAS	SVOC Analyte	NC 2L GWQ5	GCL	GWSL	Result	RL	Result	RL	Result	R	L Result	RL	Result	RL	Result	RL
84-66-2	Diethylphthalate	6.00E+03	NA	NE	8.9 B	3.2	ND	16		NT	ND	16	ND	16	17 B	3.2
131-11-3	Dimethyl phthalate	NA	NA	NE	1.6 J	3.2	ND	16		NT	ND	16	ND	16		3.2
105-67-9	2,4-Dimethylphenol	1.00E+02	1.00E+05	NE		3.2	97	16		NT	40	16	61	16		3.2
84-74-2	Di-n-butyl phthalate	NA	NA	NE	ND	3.2	0.006	J 16		NT	ND	16	ND	16		3.2
90-12-0	1-Methylnaphthalene	1.00E+00	1.00E+03	NE	2.7 J	3.2	97	16		NT	140	16	120	16		3.2
91-57-6	2-Methylnaphthalene	3.00E+01 3.00E+01	1.25E+04 3.00E+04	NE	4.6	3.2	170	16		NT	260	16		16	4.2	3.2
108-5-2	Phenol	5.000+01		Non-Res Vapor	ND	3.2	ND	16		NT	ND	16	9.9	J 16	2.3 J	3.2
CAS	EDB	NC 2L GWQS	GCL	GWSL	Result	RL	Result	RL	Result	R	L Result	RL	Result	RL	Result	RL
106-93-4	1,2-Dibromoethane	2.00E-02	5.00E+01	7.70E+00	ND	0.0097	ND	0.0097		NT	0.013	0.0096	ND	0.0097	ND	0.0099
				Non-Res Vapor												
CAS	MAEPH	NC 2L GWQS	GCL	GWSL	Result		Result		Result		L Result	RL			Result	RL
	C11 - C22 Aromatics	2.00E+02	NE	NE	ND	100	1500	100		NT	1700	100	1200	100	120	100
	C9 - C18 Aliphatics	7.00E+02	NE	NE	ND	100	130	100		NT	ND	100	110	100	ND	100
CAS	MA VPH	NC 2L GWQS	GCL	Non-Res Vapor GWSL	Result	RL	Result	RL	Result	R	L Result	RL	Result	RL	Result	RL
SESI-0029	C5 - C8 Aliphatics	4.00E+02	NE	NE	ND	75	1600 J	3800		NT	3300	7500	4400	3800	22 J	75
SESI-0030	C9 - C12 Aliphatics	7.00E+02	NE	NE	140	75	16000	3800		NT	25000 J	7500	12000	3800	91	75
SESI-0031	C9 - C10 Aromatics	2.00E+02	NE	NE	190	25	10000	1300		NT	18000	2500	8200	1300	160	25
			,	Non-Res Vapor												
CAS	Metals	NC 2L GWQ5	GCL	GWSL	Result	RL	Result	RL	Result	R	L Result	RL	Result	RL	Result	RL
7439-92-1	Lead	1.50E+01	1.50E+04	NA	1.4E-05	0.00001	6.8E-06 J	0.00001		NT	1.4E-05	1.4E-05	1.3E-05	0.00001	1.3E-05	0.00001
		ND = Not detected	at or above MDL					J = Estin	nated Co	ncentration	= <rl>MDL)</rl>					
		BOLD = Concentration Above Reference Values NT = Not Tested														
		MDL = Method Det	tection Limit					NC 2L =	NC Grou	ndwater Sta	ndards					
		NE = Not Establis	shed					GCL =	NC Gro	ss Contami	nation Levels	5				
		GWSL = Februar	y 2018 Non-Res	sidential Vapo	r Intrusion G	roundwa	ater Scree	ning Leve	ls							

Site "Closed"

- 10 years ago, we would have stopped there... Closure!!
- NCDEQ UST does <u>not</u> take the VI pathway into consideration as an exposure route
- SUMMIT further characterized the VI exposure pathway
 - Compared result values to NC Non-Residential VI Screening Levels
 - Exceedances for multiple petroleum compounds
 - Benzene, ethylbenzene, naphthalene

Key Details of the Conceptual Site Model

- Sandy Silts
- GW ~10 ft bgs
- Contaminated soils:
 - May continue to leach into groundwater table
 - Volatilize under a new foundation slab

What's Next?

Additional Assessment

2 Pre-emptively Mitigate

Further characterize the soil gas concentrations with additional assessment

- Money
- Time
- No Guarantees...

Implement engineering controls during building construction

- Money
- Time
- Assurance of Protection

2

Door #1. Additional Assessment

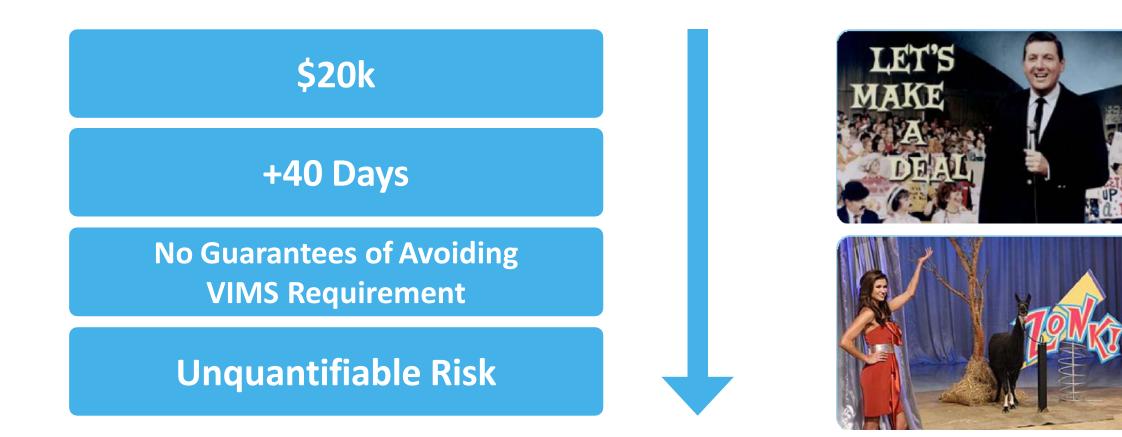
IMPLICATIONS

Additional soil gas assessment

- \$16k-\$20k
- ~40-day timeline
 Results could come back
 "clean" OR
 Likely would exceed
 residential VISLs...

ADDITIONAL CONSIDERATIONS

Proposed structure (Town Hall and Library) qualified to be screened using Commercial VISLs

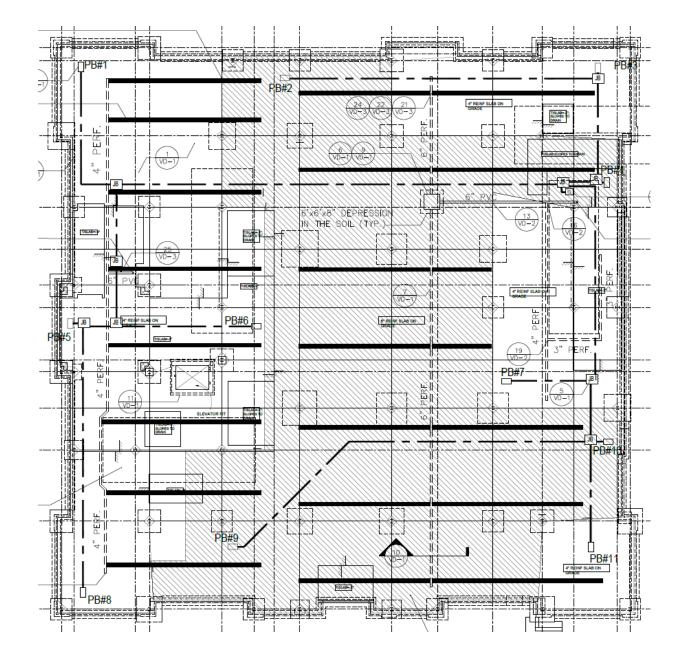

- Library on first floor
- Children occupying this area
 - Sensitive receptor

Door 1...?

Door 2. Pre-emptively Mitigate

Best Practices:

- Detailed Passive VIMS Design
- Certified VIMS Installation
- System Inspection and Performance Verification



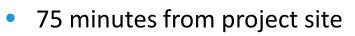
PVIMS Design

- Sub-slab venting system
 - Mirafi geotextile on soil
 - 5" Clean gravel substrate
 - (2) 6-inch risers
 - Plenum
 - 6-inch perforated trunk lines
 - TerraVent lines (low-profile)
- 11 sub-slab pressure monitoring and sampling points
- Composite spray-applied membrane
- Monitoring panel

VIMS Membrane Specifications

Design Criteria & Best Practices

- Membrane Thickness:
 - 60-mil asphaltic spray applied, OR
 - 40-mil asphaltic spray applied with chemical resistant protection layers
- Chemically resistant to COCs
- Licensed Applicator of Manufacturer
- QA/QC Plan
 - Smoke Testing
 - Coupon Sampling
 - Documentation


VIMS Membrane Selection

Enhanced Chemical Resistance at Seals, Durability, Cost-efficiency

Composite Configuration:

- 23-mil reinforced PE/geotextile Base
- Seamless 40-mil Nitrile-Advanced Asphaltic Layer
- 18-mil PE/geotextile Protection Layer

Certified Applicator:

 Responsible for membrane installation, smoke testing, & coupon sampling

BUCKEYE ELM

VIMS Project Team

VIMS Inspections

Best Practices for your QA/QC Plan

- Certified Installer
- Third Party Certified Inspections
 - Smoke testing
 - Coupon sampling/thickness verification
- Pre-pour inspections

Land Science

Project Name	Date		
Inspector Name	Time		
Location	Temperature		
VMS System Installed	Barometric Pressure		
		_	
Building Square footage	Gallons Used		
Square footage for this report	Square feet per gallon		
Coupon Samples Taken	Smoke Test Conducted	Т	
Coupon Samples Under the Specified Thicknes	Duration of Smoke Test	T	
Coupon Samples Marked for Repair	Number of Areas Needed for Repair	T	

ndicate Areas Marked for Repair: (#) Coupon Sample Repair (^) Smoke Test Repair (*) Thickness measurement repai

VIMS Installation

SP#4

SP#7

SP#10

RISER #1

SP#6

SP#9

SP#11

SP#5

SP#8

FT

Monitoring panel & Sampling valves

VIMS Commissioning & Performance Verification

- Negative pressure readings in riser monitoring point
- Indicates the passive mitigation system is "actively" applying a negative pressure to the sub-slab extraction network...

VIMS Commissioning & Performance Verification

• Negative pressure at the farthest extents of the sub-slab system

It's working!

Learning Points

- Weigh the options
- Build out a plan
- Assemble your Project Team
- Implement Industry Best-Practices
- Great chance for success!

